
Percolation exponent δp for lattice dimensionality d≥3

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1977 J. Phys. A: Math. Gen. 10 807

(http://iopscience.iop.org/0305-4470/10/5/014)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 13:58

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/10/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., Vol. 10, No. 5 ,  1977. Printed in Great Britain. @ 1977 

Percolation exponent 8, for lattice dimensionality d 3 3 

David S Gaunt 
Wheatstone Physics Laboratory, King’s College, Strand, London WC2R 2LS, UK 

Received 21 December 1976 

Abstract. Series expansions are used to study the exponent 8, for site and bond percolation 
problems on three-dimensional lattices. Our results, which include 6, = 5.0* 0.8, are 
discussed in relation to scaling theory and universality. 

To test Toulouse’s conjecture regarding the critical dimensionality (d,  = 6) for percola- 
tion processes, a similar analysis is attempted for the site problem on simple hypercubical 
lattices of dimensionality 4 c d S 7. 

We begin by reporting results obtained from series expansions for the critical exponent 
8, for bond and site percolation processes on various three-dimensional lattices. Our 
account is brief since the corresponding problem in two dimensions has already been 
discussed in some detail (Gaunt and Sykes 1976, to be referred to as G S ) .  The basic 
expansion is given there ( G S ,  equation (1.7)) as 

where the expansion parameter A is a notional field variable. Estimates of the critical 
concentration p c  (= 1 -qc) are given by Sykes et a1 (1976a). The number of terms, N, 
available is limited by the number of perimeter polynomials 0, that are known (Sykes et 
a1 1976a). Thus, we have derived expansion (1) through order N = 7 FCC(B), 8 BCC(B), 9 
SC(B), 13 D(B), 9 FCC(S), 10 BCC(S), 11 sc(s) and 14 D(s). The critical behaviour of Pc(A) 
(GS ,  equation (1.8)), assumed to be 

P,(A)-E,(l -A)”’P,  (A+l-) ,  (2) 
has been studied by the standard techniques of series analysis (Gaunt and Guttmann 
1974). 

According to (2), the expansion coefficients m, of -A(d/dA) lnPc(A) should 
approach 1/8, as n + W. Extrapolating adjacent coefficients against l / n  gives the 
linear intercepts which are plotted against n in figure 1. Calculating ‘appropriate 
extrapolants’, a smoothing device used in two dimensions, is unnecessary here since the 
Dlog Pad6 approximants to Pc(A) show no evidence of disturbing non-physical singu- 
larities anywhere in the complex A-plane. Although the plots are quite smoothly 
behaved and monotonic, they are very difficult to extrapolate due presumably to 
confluent correction terms. However, assuming a common limit for bond and site 
percolation, a value close to 8, = 5 does not seem unreasonable. Accordingly, we 
tentatively adopt the estimate 

8, = 5*0*0*8 (3) 
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Figure 1. Estimates of l /d,  plotted against n for three-dimensional site and bond problems. 

where the uncertainty has been chosen to embrace the worst upper bound of 6, < 5.8 
for the site problem on the body-centred cubic lattice. A preliminary report of the result 
(3) has been given elsewhere (Gaunt 1977). The uncertainties in p c  introduce additional 
uncertainties into (3) of about f0.5. The apparently anomalous behaviour of the 
body-centred cubic lattice for both site and bond problems is possibly caused by the 
uncertainties in pc .  

Alternative but consistent estimates of 6, are provided by the Pad6 approximants to 
the series for (A - l)(d/dA) In Pc(A) evaluated at A = 1. The main diagonal [n /n]  
sequences (n  = 1,2 , .  . . ,6) for the diamond lattice are: 

6*914,6*916,5-904,5*296,5.474,5*174,. . . (4) 

7*456,7*606, -, 7*064,5*523,5*782,. . . ( 5 )  

for the bond problem, and 

for the site problem. The diamond lattice is chosen since the sequences are longest in 
this case. 

We have estimated the critical amplitude E, in (2) from the residues at the pole close 
to A = 1 of the Pad6 approximants to the P ~ ' D  series, using the central estimate in (3). 
This method proved the most useful in two dimensions. We find the following estimates 
for D, = E,',: 

0.25 f 0.005 T 0.02 FCC(B) 

0.24 f 0.02 7 0-025 BCC(B) 

0*22*0*015F0*025 SC@) 

0*20*0*015 70.035 D(B) 

(6) 

and 
0.21 f 0.03 7 0.035 
0.24 f 0-02 T 0.045 

FCC(S) 

BCC(S) 

0.25 f 0.03 TO9045 SC(S) 

0.262 0.03 T0.045 DW 

(7) 
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where the first uncertainty represents the inherent uncertainty of the method and the 
second that due to the uncertainties in pc. Further uncertainties would be introduced by 
those given in (3) for S, .  As expected the amplitudes vary monotonically with lattice 
coordination number for both bond and site problems. Notice, however, that D, 
increases with coordination number for the bond problem and decreases for the site 
problem. 

In summary, it appears that our best estimate of 6, = 5.0 * 0.8 is consistent with S ,  
being a dimensional invariant. Earlier work by Essam and Gwilym (197 1) based upon 
shorter series gave the same central result but with much larger uncertainties, namely 
l /Sp  = 0.23~0.2. Exactly the same result is quoted by Stauffer (1975) who re-analysed 
existing Monte Carlo data. 

The direct estimate (3) is in good agreement with 

s, = 4.95:::;: (8) 

yp = 1.66 f 0.07, 

8, - 1 = Y P / P P .  

obtained using the series estimates (Sykes et a1 1976a, b) 

P, = 0.42 * 0.06, (9) 

(10) 

and the scaling law (Essam and Gwilym 1971) 

Other percolation exponents that have been estimated directly include A, and Y,, 
the ‘constant gap’ exponents for the moments of the cluser size distribution and the pair 
connectedness, respectively. The best scaling predictions, namely 

A, = 2.08 * 0.13, vP= 0.83 * 0.06 (1 1) 

are obtained using the numerical estimates (9) and the scaling laws (Essam and Gwilym 
1971, Dunn eta1 1975a) 

(12) 
where d is the lattice dimensionality. The predictions (1 1) are in good agreement with 
the direct series estimate (Essam et a1 1976) 

A, = P, + Y P ,  v p  = (2PP + Y , ) / 4  

Ap = 2.2 * 0.1 (13) 
and (Dunn et a1 1975b, Cox and Essam 1976) 

0,825 + 50Apc* 0.02, FCC(B) 

0.83 + 15Apc* 0.01, FCC(S1. 

Although the central scaling value of Ap is just excluded by the direct estimate, there is a 
substantial region of overlap when the uncertainties are taken into account. 

The numerical estimates in (3), (9), (13) and (14) are quite close to 

which we adopt as simple mnemonics that satisfy the scaling laws exactly. In general, the 
values in (15) lie close to the central direct estimate and certainly well within the quoted 
uncertainties. The only exception is A, = 2& = 2.0833 . . . which lies just outside the 
range quoted in (13). 

Gaunt and Sykes (1976) have speculated as to whether the three-dimensional data 
would be consistent with 8, being an even integer, as it seems to be in two dimensions 
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(6, = 18) and is for the Bethe lattice (6 ,  = 2). Although such a conclusion cannot be 
ruled out completely, it seems in fact that 6, is much closer to an odd integer, namely 
6 ,  = 5. As is well known, S = 5 has been suggested (Gaunt 1967, Gaunt and Sykes 1972) 
for the three-dimensional Ising model. Although the equality 6, = 8 = 5 is consistent 
with ‘new’ or ‘weak’ universality (Suzuki 1974), the uncertainty in the numerical 
estimate of 6, is really quite large (16%) so that this consistency may well be fortuitous. 
Certainly weak universality does not appear to hold (GS, § 3) in two dimensions where 
6 = 15 and the numerical uncertainties in S, prohibit any overlap. 

A test of universality (or lattice-lattice scaling) for percolation processes can be 
made by examining the following combination (Betts et a1 197 1) of critical amplitudes: 

where the amplitudes Bp and C, correspond to the critical exponents pp and yp, 
respectively. In two dimensions, it has been demonstrated (Stauffer 1976, Marro 1976) 
within reasonable bounds that R, behaves like a universal quantity for both bond and 
site problems. For three-dimensional lattices, the amplitudes D, are given in (6) and (7), 
and the C, are given by Sykes et a1 (1976a). For B,, slow convergence of the series 
prevented Sykes er a1 (1976b) from drawing any firm conclusions except for the 
face-centred cubic site problem for which a rough estimate was quoted without 
uncertainties. If the uncertainty in B, does not exceed 4%-in two dimensions it is less 
than 1%-then R ,  = 6.5 f 3. Assuming R ,  to be universal for three-dimensional site 
problems, yields the following predictions for B,: 

3.7 f 0.7 BCC(S), 3.4 * 0.7 S C ( S ) ,  3.1f0.6 D(s). (16) 

If the same value of R ,  also obtains for bond problems, then we find for B,: 

5.0f0.8 FCC(B), 4.4 f 0.7 BCC(B), 

3.95 * 0.65 SC(B), 3.5 f 0.7 D(B). (17) 

Finally, let us consider the way in which 6,(d) approaches its Bethe value (6 ,  = 2) as 
the dimensionality d approaches the critical dimension d,. It has been conjectured 
(Toulouse 1974) that d, for percolation is d,=6 rather than d,=4 as found for 
second-order phase transitions with short-range interactions. This has been tested 
numerically by Gaunt et a1 (1976), who derived series for the mean cluster size of site 
mixtures on a d-dimensional simple hypercubical lattice and estimated yp(d) for d s 6. 
Their results, which were in broad agreement with the Monte Carlo estimates of 
Krkpatrick (1976), supported Toulouse’s hypothesis to within the accuracy attainable. 
Analysis of the closely related cluster growth problem indicates d, = 6 in this case also 
(Gaunt et a1 1976). In the present work, we have used the first seven perimeter 
polynomials given by Gaunt et a1 (1976) for general d to derive P,(A) through A’ for 
d = 4,5,6 and 7. Numerical estimates of p , (d )  are given in table 3 of Gaunt et a1 (1976), 
except for d = 7 where we have used p,(7) = 0.089 f 0.003 (Gaunt, unpublished work). 
The series have been analysed by the method employed to plot figure 1 of the present 
paper. The results are exhibited in figure 2. Ford = 3, the curve is that already given in 
figure 1 for the simple cubic site problem. The d = 2 plot is for the simple quadratic site 
problem and is taken from figure 1 of G S ,  where it continues up to n = 17. The 
uncertainties produced by uncertainties in p ,  are between 10 and 15%, except ford = 2 
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Figure 2. Estimates of 1/S, plotted against n for the site problem on simple hypercubical 
lattices of dimensionality d = 2, 3, . . . , 7. 

where they are only 4%. Although the curves are not easily extrapolable, we draw two 
tentative conclusions. First, it is not difficult to accept the possibility of a common limit 
for d = 6 and 7 (presumably 6, = 2). Second, while not excluding the possibility, the 
evidence seems rather against 6,(4) = 4 and S,(5) = 3, in which case S ,  cannot be integer 
in all dimensions. 
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